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FOREWORD

This report, which presents the experimental and theoretical results of a
program conducted to investigate the supersonic flutter characteristics of a
swept-back all-movable m’xrtace, was prepared by the Aeroelastic and Structures
Research Laboratory, Massachusetts Institute of Technology, Cambridge 29,
Massachusetts for the Aircraft Laboratory, Wright Air Development Center,
Wright-Patterson Air Force Base, Ohio. The work was performed at MIT
under the direction of Professor R. L. Halfman, and the project was supervised
by Mr. G. W. Asher. The research and development work was accomplished under
Alr Force Contract No. AF 33(616)-2751, Project No. 1370 (UNCLASSIFIED
TITLE) "/Aeroeluuctty, Vibratlon a.nd ‘Noise, " and Task No. 13479,

(UNC LASSIFIED TITLE) "Inve "lnveuugatlon of Flutter Characteristics of All-Movable
Tails, " with Mr. Niles R. Hoffrnan of the Dynamics Branch, Aircraft Laboratory,
WADC as task engineer. This research was started in January 1955 and completed
in September 1956. Additional supersonic flutter testing of swept all-movable
stabilizers may be performed at a later date to cbtain further information.

The authors are indebted to Mr. O. Wallin and Mr. C. Fall for their help in
building the models and in keeping the experimental equipment in good order, and
to Mr. G. M. Falla for his help in making the high speed photographs. The

‘authors are also indebted to Messrs. A. Heller, Jr., J. R. Friery and H. Moser

for their help in preparing the necessary calculations, tables, and figures for
this report.

Portions of this document are classified CONFIDENTIAL since the data
revealed can be employed to establish design criteria for the prevention of flutter
of swept-back all-movable tails of aircraft in the supersonic speed range.
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ABSTRACT

\ This report describes the flutter testing at supersonic speeds of a series of
swept-back all-moving stabilizers. An attempt was made to define the flutter
boundaries, for one location of the pitching axis, over the Mach number range of
1.3 to 2.1, by testing at a number of different levels of stabilizer stiffness, and
at a number of different pitching frequencies.

The results indicate that large increases in the region of instability can
occur due to the introduction of the pitching degrees of freedom. The test results
follow the trends of theoretical calculations, but the quantitative correlation be-
tween the theoretical and the experimental results is only fair.

PUBLICATION REVIEW
* . This report has been reviewed and i{s approved.

FOR THE COMMANDER:

| | | T

«~ RANDALL D. KEATOR
Colonel, USAF

Chief, Aircraft Laboratory
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LIST OF SYMBOLS

NOTE

All quantities marked with * are measured in an unswept reference system
except when appearing with subscript @. They are then being referred to a
reference system swept with the elastic axis (see Fig. 8 for unswept x,y and
swept xg .Y reference systems).

a sLocation of elastic axis in semichords aft of stabilizer midchord

a Speed of sound (ft/sec), a = 49.1 VT

AR Panel aspect ratio

b *Semichord of stabilizer (ft)

c *Chord of stabilizer (ft)

C ¢ Flexibility influence coefficient of pitching mechanism (rad/ft-1b)

d *Distance between pitch axis and elastic axis at the root, positive aft (ft)

ea Elastic axis or shear center position (% chora)

E Modulus of elasticity in bending

El *Bending stiffness

f Frequency (cps)

F Assumed mode shape for calculation

14 Structural damping coefficient (ref. 10)

G Modulus of elasticity in torsion

GJ *Torsional stiffness '

h Vertical displacement of stabilizer elastic axis (ft)

h;,h, See Appendix 1, Eq. (1)

la *Mass moment of inertia of stabilizer per unit span about the elastic axis
(slug-ftz)

I¢ Mass moment of inertia of rigid stabilizer about pitch axis (slug-ftz)

k *Reduced frequency, bw/V; (k = kg)

1 *Semi span of model (ft)

LM Aerodynamic coefficients (see Appendix I)

LE Leading edge

m *Mass of stabilizer per unit span (slug/ft)

M *Mach number

Ty _*Section radius of gyration (ri = Ia/msz in semichords

Sa *Static mass unbalance per unit span about elastic axis (slug-ft/ft)
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T

TE

v

X, ¥,2

b>= o

N NE ©I6 D ¢

[\]
1,2
(1/9c¢

Time (secs)
Absolute temperature (°R)
Trailing edge
*Velocity (ft/sec)
*Coordinate distances (shown in Appendix I, Fig. 8)
*Distance section center of gravity of the stabilizer lies aft of elastic
axis in semichords
*Torsional deflection of the stabilizer, positive nose up (radian:}
*See Appendix I, Eq. (1)
¢*Nondimensional spanwise coordinate, n = y/¢
Taper ratio, tip chord/root chord
Angle of sweep of elastic axis, positive for sweep-back, (degrees)
*Relative density, u = m/1p bé (constant along the span)
Alr denslty (slug/ft
Rigid body pitching about pitch axis, positive nose up
See Appendix I, Eq. (1)
Frequency (rad/sec)
Flutter parameter (“’al/wf)z' Eq. (23)

Deflection of the mean surface of the stabilizer (ft)

SUBSCRIPTS

Conditions at start of flutter
First and second uncoupled bending modes of the stabilizer

First measured cantilever or "pitch locked" bending mode of the
stabilizer (Nominal first bending frequency)

Pertaining to pitch-locked-out condition

Experimentally determined parameter

Parameter evaluated at the root of the stabilizer (y = 0}

Parameter evaluated at the 75% span station of the stabilizer
Reference station for theoretical calculations (75% span station of the
stabilizer)

Parameter evaluated at tip of stabilizer (y = ¢)

First uncoupled torsional mode of the stabilizer

First measured cantilever, or "pitch locked, " torsicnal mode of the
stabilizer (Nominal first torsional frequency)

Parameter measured in reference system swept with the elastic axis
Rigid pitch degree of freedom

First and second measured coupled modes

Quarter chord

WADC TR 56-285 viii



. rma e e

CONFIDENTIAL

SECTION 1
INTRODUCTION

This report covers the experimental flutter tests and associated theoretical
calculations made on a swept, all-moving horizontal stabilizer at supersonic
speeds. The configuration tested is becoming a comme:a one for high speed air-
craft ind missiles.

At present, the methods of theoretical supersonic flutter analysis using
two-dimensional aerodynamic forces derived from linearized theory do not
appear adequate to predict the absolute levels of the flutter boundaries.
Reference 3 shows that even for the simple cantilever straight wings analyzed
in that report such analyses give regults that are conservative in one Mach
number range and unconservative in another. It may be suspected that the poor
correlation between theoretical and test results shown in Ref. 3 arises from
the use of two-dimensional aerodynamic forces on a three-dimensional lifting
surface, and so the use of more powerful metkods of analysis, such as the
aerodynamic influence coefficient methods of Refs. 5 and 6, may improve the
correlation. However, correlations between theoretical and experimental
results, where the theoretical calculations have been based on three-dimensional
aerodynamic forces, are not common in the supersonic regime. Until such
correlations have been made, it is not certain that the added labor of the in-
fluence coefficient methods will be worth while in terms of improved results.
The designer will probably rely on the simpler two-dimensional calculation
to supply a description of the trends to be expected when various parameters
are changed, and will probably depend for some time on what experimental data
is available or can be obtained to define the absolute levels of the flutter
boundaries.

The present program is intended to define experimentally the level of the
flutter boundaries for an all-moving, swept horizontal stabilizer. The canti-
lever, or "pitch locked, " boundary is defined by tests of the cantilever con-
figuration of the model shown in Fig. 14a, and through the use of data from
previous flutter tests. Various levels of wing and pitching restraint stiffness
are then combined in an attempt to define the effect of the pitching degree of

Manuscript released by the authors September 1957 for publication as a
WADC Technical Report.
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freedom on the flutter boundaries, over the Mach number range 1.3 to 2.0. The
results are discussed in Section II of this report, and a complete compilation
of the experimental data is found in Appendix II.

Along with the experimental program, a large number of theoretical
calculations have been made on the basis of two-dimensional aerodynamic
coefficients, both supersonic and incompressible. The major effort was ex-
pended on three-degree-of-freedom calculations employing assumed wing bend-
ing and wing torsion structural modes and a rigid pitching mode. Four-degree-
of-freedom calculations were also made which included an assumed second bend-
ing mode as well as the previously mentioned modes. The resuils of the calcula-
tions are discussed in Section II, and the equations used for setting up the cal-
culations are described in Appendix L.

WADC TR 56-285 2
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SECTION I

DISCUSSION OF RESULTS

1 Discussion of Theoretical Resultls

A considerable number of calculations were made during the course of the
program for the swept stabilizer models to determine, if possible, what trends
might be expected in the flutter boundaries for models of various stiffness levels
and varying pitch frequencies. The calculations used the velocity component
method of Ref. 8 with two dimensional aerodynamic coefficients. The model {or
calculation of the aerodynamic integrals was assuined to be untapered in order
to avoid variations of reduced frequency, k = bw‘/v, along the span, but the
mass and stiffness parameters were assumed to vary in the same manner as the
experimental model. A description nf the calculations is found in Appendix I.

Most of the theoretical effort was expended on three-degree-of -freedom
calculations employing supersonic aerodynamic coefficients. The three degrees
of freedom used for this analysis were wing first bending (parabolic),wing first
torsion (linear),and rigid pitch about the rotation axis. The results of these
calculations are given in Fig. 1 for various values of the pitching to torsion

frequency ratio w¢ /wal)2 and pitching to first bending frequency ratio
2
(w‘ /whl) . Inall of the calculations ( whl/wal) = 0.25, where whl, w“'l'

and w , refer to the frequenciea in the assumed uncoupizd modes. Note that
the reference semichord for the calculations, br. is that of the 75 % span
station, bo. 75 The reference axes for measuring the semichord as well
as other similar quantities are aligned with the stream unless a subscript
is used. In that case the reference axes are swept with the elastic axis (See
Fig. 8). Many of the parameters, such as y, are constant along the span.

Perhaps the most interesting feature shown in Fig. 1 is the sharp increase
in the regton of instability that occurs below Mach numbers of about 1.8 for a
value of (wo/m"l)2 = 0.20. For this value of (“"0/“’0 )2, the boundary actually
1

crosses the M = 1. 7 line three times giving the shape shown. As noted in Ap-
pendix I, the four-degree-of-freedom calculations indicated that this sharp drop
or "bucket” in the boundary probably occurs because of a change in the mode of

WADC TR 56-285 3
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flutter. Figure 13 of Appendix I shows that the "bucket"” may be very much af-
fected by the level of structural damping, g. to the extent that for g about 0.6 the
boundary for (w¢/wa )2 = 0.20 may follow smoothly the trend established by the
1
cantilever, or “locked' case (w'b/wa )2 = .
1

For high pitch frequencies the velocity - Mach number trend is similar to
the locked pitch case with only a moderate lowering of the flutter velocity. For
low pitch frequencies the velocity - Mach number trend appears to be nearly a
constant equivalent airspeed (Yo V = constant) through a wide range of
Mach number,

For M - 1.5, corresponding to a cross flow Mach number perpendicular to
the 40% chord line, M_Q, of 10/9, a sharp increase in the region of instability
occurs even f{or the cantilever case, (w¢/ W }* = @. This increase in the

i

region of iastability may arise from the use of the linearized supersonic aero-
dynamic theory at such a low cross flow Mach number. It must be remembered
that the Mach number used for the determination of the aerodynamic coefficients
of the calculation is the cross {low Mach number, not the {ree stream Mach
number.

The cantilever curves, (wdb/“’a )2 =, of Fig. 1 were determined from two.-
1

degree-of-freedom calculations in which first bending and first torsion modes
' were used without the pitching degree of freedom.

Figure 2 shows curves of the flutter parameters Vf/ wa] bo 75 and
Vf/wf by, 7e versus the frequency ratios (wo /wal) and (u:[/whl) calculated by
using incompressible aerodynamic coefficients and three degrees of freedom:

wing first bending, wing first torsion, and rizid pitch. A sharp increase in the
region of instability for values of (w¢ /“’a ) less than about 0.5 can be seen.
1

More significantly, the decrease in stability appears to be related to the
near equality of pitch and bending frequencies. This effect has been observed
by other investigators and depends on pitch axis location.

Calculations were also made using an assumed second bending mode along
with the first bending, first torsion, and pitch modes and the results are dis-
cusoed in Appendix I The addition of the second bending mode does not affect
the shape of the flutter boundaries significantly in the Mach number range studied.
Changing the ratio of second bending to first torsion frequency, (whz/u)” ),

from slightly greater than 1.0 to slightly less than 1.0 also has little effect on
the flutter boundaries. It appears, then, that sufficient accuracy was obtained

NADC TR 56-285 5
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in the calculations with three degrees of freedom for the wings studied. As noted
in Appendix I, the V-g solutions for the four-degree-of-freedom calculations did
furnish valuable insights into the modes of flutter and the cffect of structural
damping.

2 Discussion of Experimental Results .

During the test program nine cuses of flutter occurred for the sixteen
configurations tested. Two models {luttered in a cantilever, or "pitch locked, *
condition and the remaining models at various levels of wing stiffness and
pitching frequency. '

Reference 1 describes the M., T. -WADC supersonic variable Mach number
Blow-Down Wind Tunnel facility in which the tests were conducted. Reference 2
describes the techniques of testing that were used to obtain the data., No major
changes were necessary in either the wind tunnel facility or the testing techniques
to obtain the experimental data presented in this report.

The planform of the stabilizer models tested is shown in Fig. 14 of
Appendix II. They incorporated a pitching degree of freedom with a pitch axis
perpendicular to the root chord, 64.3% of the root chord aft of the leading edge.
The stiffness of the pitching restraint could be varied at will. The model con-
struction was similar to that described in Ref. 2 with a single spar providing the
required stiffness. Balsa fairings glued to the spar gave the required 6% thick
double wedge airfoil shape and suitably spaced lead welghts provided the required
mass parameters. A more complete description of the models is given in
Appendix II.

Before flutter testing, each model was given vibration and static tests. The
results of these tests, as well as the tabulated results of the flutter tests, are
cortained in Appendix II. With the pifching mechanism ""locked cu?, ' the
cantilever condition, the lowest natural modes of vibration were determined for
each model. In general three modes were easily excited, the first bending,
first torsion, and second bending modes. The first bending mode and first
torsion mode determined in thic manner were used to plot the flutter data of
Figs. 3 and 4 are the whN and w"N of the figures. The rigidities in bending and

torsion, E[r and GJr. at the root were also determined for most of the mexiels in
the cantilever coundition. This data is not too satisfactory since it is difficult to
assess accurately the effects of root fitting deformation. As can be seen {rom
Table 2 there seems to be considerable scatter in the E:lr and GJr data since
models with essenlially the same cantilever [requencies appear to have widely
different values of EIr and GJr. With the pitching mechanism in operation

NADC TR 56-285
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vibration data was also taken for various pitch restraint stiffnesses. In general,
only the first three modes of vibration could be excited easily as can be seen
from the data of Table 5. This data furnished the coupled vibration frequencies
W, a_md wy for the plots in Figs. 6 and 7. Influence coefficient data was also
taken with the pitching mechanism in operation. The uncoupled pitch frequency,
wy, was determined from the measured rigidity of the pitch mechanism and
from the measured total mass moment of inertia of the wing and root fitting, I¢.
A few of the frequencies so determined were checked by fitting a rigid disc of
known moment of inertia to the {lexure and measuring the resulting vibration fre-
yuency. The check on frequencies was satisfactory. Pitching frequency data can
be found in Table 3 of Appendix I, while the frequency data and all of the {lutter
data is summarized in Table 4,

Figures 3. 4, and 5 ccmpare the experime:r 'l flutter data and the theoretical
predictions when plotted versus Mach number, .l is presumed that Woo the
N

first measured cantilever torsion {requency, corresponds fairly closely to the
uncoupled {irst torsion frequency, Wooo used as a parameter in the calculations
; 1

and similarly that “h corresponds closely to wh - Since the different models
N 1

fluttered at somewhat different relative densities, B and since the value of y
used in the theory is lower than for most experimental points, the factor
l,’V;Tl has been included in the ordinates to reduce the effects of these variations.

The tests of the SWS-2 model, which fluttered in a locked configuration,

- along with the data of Ref. 3 were used to establish the cantilever, or bending-

torsion flutter boundary; ( w, /w )2 or (w, /w )2 = w. (The SWS-1d model
®°"hy $ 7 Tay

also fluttered in a cantilever vondition but, since the vibration data of Table 5
showr that this model had a low torsion frequency quite different from the

rest of the stabilizer models, it was used only as a guide in drawing the "locked"
boundary.)

The SWS-1 series of models, had a slightly higher stiffness level than SWS-2
and thus had a margin of safety of about 7% in bending-torsion flutter, The
margin of safety is defined as the ratio of w, hecessary to prevent {lutter in

N

the cantilever condition to the w, of the actual model. The SWS-1 series models
N

were flutter-free in the cantilever condition but when the pitch frequerccy was low-
ered to about 98 cps, flutter occurred at M = 1. 35, as can be scen from the
SWS-1-98 mode! test point. Two other SWS-1 series models were {lutter tested
at lower values of pitch frequency, the SWS-1c-48 and the SWS-1e-74 models,

The vibration data shows that these models were similar to the SWS-1-98

WADC TR 56-285 8
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model in 2 cantilever condition. The SWS-1c-48 model fluttered on injection
when practically in the tunnel whereas the SWS-1e-74 model fluttered in the

middle of a test run.

The three flutter points for the SWS-1 series models cuver quite well the
Mach number range available in the wind tunnel so that further tests of this
series of models at intermediate values of the pitching frequency were not
attempted. Instead a third series of models, SWS-3, were designed with a
margin of safety in bending-torsion flutter of about 45%based on the curves
of Figs. 3, 4 and 5. In order to achieve the higher frequency and stiffness
level required by the increased margin of safety without increasing the model
thickness ratio, it was necessary to modify the design parameters of the SWS-3
models. The {requency ratio (whN/ waN) was lowered from an average of 0. 29

to 0. 26 rather than change the mass parameters. The test data and calculations

of Ref. 3 show that there is little variation in the level of the cantilever flutter

boundaries for straight and swept wings for variations in (w],, /wu ) over this
‘N N

range.

Three of the SWS-3 series models, SWS-3b-53, SWS-3a-63, and SWS-3c-74
fluttered on or very close to injection. The SWS-3c-74 fluttered when fully in
the tunnel but before the Mach number had started to change and, therefore, is
not shown as an injection flutter. The SWS-3a-63 and the SWS-3b-53 were almost
in the tunnel when flutter occurred and are shown as injection flutter. In sketch-
ing the experimental boundaries,the data for SWS-3d-87 and SWS-3c-74 were
relied on more heavily than the data for SWS-3a-63 and SWS-3b-53.

The SWS-3 series data show that there can be a very large increase
in the region of instability if the ratio (‘”0 /wh )2 is near unity. In fact, it

appears that for a given value of (w"/whN)z the stiffer SWS-3 models will flutter

at higher Mach number than their SWS-1 counter parts. Thus, the experimental
boundaries for a given (wo /wh )2 appear to bend back and form deep "'buckets'
N

in the curves just as they do for the calculated results. Ingeneral, however,
the calculations predict larger regions of instability than the experimental
resuits indicate.

It is interesting to note that the SWS-3 series flutter apparently occur in
a different flutter mode than the SWS-1 series, Figures 18 and 19
show the analysis of the high speed movies for the SWS-1-98 and the SWS-3d-87
modeis, taken from the excerpts from the high speed movies shown in Figs. 16
and 17 The SWS-1-98 model should have a different mode of flutter than the
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SWS-3d-87 if the results of Appendix [ are correct in that the ""buckets” of the
boundaries are formed by a new flutter mode. Examination of Figs. 18 and 19
shows that while the relation between the tip vertical translation amplitude to
pitch amplitude is of the same order of magnitude for the two models, the
relationship between the tip angle of attack ampiitude and the pitch amplitude is
much different. The SWS-1-Y8 model shows a much larger ratio of tip angle of
attack amplitude to pitch amplitude than does the SWS-3d-87. This fact indicates
that the flutter mode for the SWS-1-98 is composed of important pitch-bending-
torsion motions while the flutter mode for the SWS-3d-87 is mainly pitch-bending.

It would appear, then, that for smal} margins of stability in bending-torsion
flutter the addition of a high frequency pitch degree of {reedom causes a decrease
inwhat is essenualiy a bending-torsion {iutter speed largely because of the
decrease in the coupled torsion 'requency. However, if (mo /wh) is low enough
to be near unity a bending pitch mode develops which may increase the region
of instability to as high as M = 2,

Before discussing some of the other curves drawn from the test data, some
attention should be given to the SWS-3-53 model. This model, although practi-
cally identical with the SWS-3b-53 model {nsofar as vibration frequencies are
concerned, was tested in the same range of Mach number and density as the
SWS-3b-53 model but failed to flutter. Jowever, the structural damping of the
first two important coupled vibration modes is about twice as great for the
SWS-3-53 model (average g of 0.04) as it is for the SWS-3b-53 model (average g
of 0. 02). The SWS-3 series flutter points form the sharp increases in the
regions of instability or '"buckets” of Figs. 3, 4 and 5: thus, the mode of {lutter
may be one that is very sensitive to g variations. Since it was predicted theo-
retically (Fig. 13) that the mode which forms the "bucket"” i3 very sensitive to
changes in g, it then seems possible that the higher structural damping of the
SWS-3-53 model may have prevented flutter for this model down to a Mach
number of 1.8 where it was destroyed ky a failure of the inboard leading edge
caused by a root seal failure. This possibility that the 'buckets" in the
experimental curves are sensitive to g variations may point the way towards
elimination of large regions of instability by use of damping. 1t should be noted
that for most of the stabilizer models tested the value of g for the first two
impor:ant coupled modes is about 0. 02.

The data for the SWS-3e-120 model is also particularly interesting because
this model faiied to flutter over the Mach number range 1.25 to 2.00. This
fatlure to flutter means that the curve for (w°/uh )2 = 0. 18 must be drawn as

N

shown in Figs. 3.4 and 5 and shows that at these higher values of (mo /“’h ) the
N

“bucket” is not evident. Comparison of the data for the SWS-3e-120 and the
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other SWS-3 models helps to set upper and lower limits of (c.:‘l$ / waN) for flutter

in the Mach number range 1.27 to 2.10.

In Fig. 68 and Fig. 7 the {irst two coupled frequencies with the pitching
mecchanism in operation, w, and wy, were used to form the flutter parameters
(bo_ 75“’1/%)V(ﬂ/35)0. 75 and (bo. 75w2/af)\/' (u/65)0. n5s Where a is the speed
of sound at flutter. The use of the relative density correction in this form is
based on the previous experimental results of Ref. 3 and not on any firm
theoretical basis. Figures 6 and 7 may be useful as design charts; a straight
line parallel to the abscissa being a constant altitude line, and a straight line from
the suppressed origin being a line of constant dynamic pressure.

In Fig. 6, the first'coupled vibration frequency, wy, 18 used to nomalize
the data. This vibration mode, as can be seen from Table 5, is essentially
a combination of the rigid pitch and the first bending modes of the model. The
SWS-1e-74 and the SWS-3d-87 both have the same value of the parameter {w /“’1)
and hence must fall along the same boundary. Thus, the curves must be dra\vn
as shown in Fig. 6 with a narrow stable region between the (“b /“’l) = o and the
{w /‘"1) = 1.60 curve.

Figure 7 shows curves similar to those of Fig. 6 except that the second
coupled vibration frequency, W, is used as a parameter. This vibration mode,
as can be seen from the data of Table 5 is largely a combination of the rigid
pitch and first torsion modes of the model except {or the lowest pitch restraint
stiffnesses where it may involve appreciable bending.

For the various experimental plots, curves have been drawn on the basis of
a bare minimum of data. The falrtng of such curves is subject to some question,
and Figs. 3,4,5,6, and 7 therefore represent only rough sketches of where the
flutter boundaries lie. The general outlines of the curves are probably correct,
and cnough experimental data has been obtained to show that there are large
increases in the regions of instability with sufficiently low values of the pitching
frequency. Furthermore, these increases appear to follow the general trends
established by the theoretical results.

In one respect the theoretical results do not match the experimental results
even qualitatively. This is at the lower Mach number of the calculation M = 1.52
or Mg = 10/9. For this case the calculated results show that even the "locked"”
case has a sharp increase in the region of instability and predicts that the SWS-1
and the SWS-3 series models will flutter in the cantilever or ""locked" configura-
tion.  The failure of the theoretical calculations to predict flutter correctly in this
regime is probably due to the failure of the linearized aerodynamic theory to
predict aerodynamic forces correctly in the high-transonic - iow supersonic
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regime. " Similarly, it seems probable that the failure of the theoretical
calculations to make good quantitative predictions throughout the Mach number
range for the various pitching frequencies and model stiffnesses is due to the
failure of the aerodynamic terms in describing accurately the actual forces on

the wing.
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SECTION IIl

CONCLUSIONS

Some conclusions may be drawn from the theoretical and the experimental
results of the present program. They may be summarized as follows:

l. Three basic assumed modes appear to be sufficient to define
qualitatively the flutter boundaries when the velocity-component
method of Ref. 8 18 used. These modes are wing first bending,
wing {irst torsion, and rigid pitch. Addition of wing second bend-
ing does not change the results of the calculation significantly.

2. For low margins of safety in bending-torsion flutter, the
fnclusion of a high frequency pitch mode results in minor
reductions in flutter speed.

3. For both low (79 and high (45% margins of safety in bending-
torsion flutter, the inclusion of a critical pitch mode (w¢ /“’h 1)
causes large regions of instability in an essentially pitch-
bending flutter mode which may extend as highas M = 2,

4. The theoretical calculations do not give a good quantitative
correlation with the experimental results. The theoretical
calculations predict larger regions of instability than are
observed experimentally. They also predict that the rapid in-
creases in the regions of instability will occur at higher values
of (wy /whl)'than were observed experimentally,

5. The theoretical calculations indicate that the mode of flutter
which causes the large increases in the region of instability
may be very sensitive to changes in structural damping coef-
ficient. Some of the test data obtained from the SWS-3 scries
models confirm this conclusion.
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APPENDIX 1

THEORETICAL CALCULATIONS

1 Introduction

In setting up the flutter equations for the all-movable swept stabilizer, the
authors examined the relative merits of the strip-theory method (Ref. 7) and
the velocity-component method (Ref. 8). For the strip-thcory method, the
aerodynamic forces are applied to sections parallel to the free-stream while
for the velocity-component method, they are applied to sections normal to the
elagtic axis. The former method is more rational when the wing ribs are
parallel to the free stream, and gives a better representation of the aero-
dynamic conditions at the root and wing tip. The latter method, however,
appears to be more suitable for the swept stabilizer model which derives all its
stiffness characteristics from a single spar. The simple spar type of construc-
tion, the relatively high length to chord ratio as well as the results of vibra-
tion tests suggest that the concept of the root being effectively clamped perpen-
dicular to the elastic axis, which is a basic assumption of the velocity-component
method, is well justified. Therefove, it was decided that the velocity-component
mcthod would be used in deriving the equations of motion.

In the derivation and solution of the equations of motion by the velocity com-
ponent method all quantities, mass parameters and aerodynamic forces, are re-
ferred to a reference system (x_Q, yQ) swept with the elastic axis (Fig. 8).

In particular the Mach number used in obtaining the aerodynamic coefficients
must be the crossflow Mach number Mg . In the presentation of the results,
however, all the theoretical flutter parameters have been referred to an
unswept reference system (x, y) for convenience when comparing with experi-
mental results.

2.  Flutter Equations Based on Velocity-Component Meathod

The [lutter equations are derived following the method of Section 16.2 of
Ref. 9. The assumption that the wing displacement is a superposition of four
modes gives as the deflection of any point (Fig. 8)

NADC TR 56-285 20



Zalxg: Y1) = Fy ()R () + Fyy (0)hp0 « xgF ofy )@ 5 ()
4(y9 sin g +xgcosQ-d)6 (t) (1)

where (see Eqs. 40-42) .

are the first and second assumed cantilever bending modes

2
F _ is the first assumed uncoupled torsion mode
El’ 52 } are reference tip amplitudes for the first and second bending modes,

F, , F
h;’ "h

E_Q ,® ) first uncoupled torsion mode, and rigid body pitch mode, respoctively.

ACTUAL ROOT
4 »
4
2y -
/ ° 1= 414
y
\( ¢ RIGID BOOY ROTATION AXtS
\_;, NN, W .S
- \’
EFFECTIVE
”00T - 1
/Q\\ ‘ ,-ELASTIC Axrs
LI} \"\ / \\\
™a / \,
(1)
/

Fig. 8. Axis system for swept stabilizer.

From Eq. (1) it is seen that the rigid body pitch is equivalent to a bending of
the elastic axis plus a rotation about the elastic axis, so that only the aero-
dynamic forces due to the translation and rotation of sections normal to the
elastic axis are needed. Application of the Lagrange equations of motion to the
system as given by Fig. & along with the assumption of simple harmonic motion
and the introduction of the dimensionless variable

y
to
leads to the [ollowing dimensionless set of flutter equations:
F'1 F’2 y
A(-.)oB(———) +Ca +«» Do = 0 (3)
b b
'QO ‘QO
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0 .Qo 0 .Qo Q nQ

3

1 b 1 by 2 Po, | dF
b b b b fg / dn R
Q' 9 0 2
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0 ""g, 9 0
2 2 2
w 1 b 1
d v
[l - (m?_) Z”f(;—) (r)ugdng + cos .Qf(
N 0 \°Qq Q0 0
3
1 b
-2cos@f (b_d_.) (B_'g. ) ug X, dn_QJ }
0 Q9 2y
and 2
wal
()
e
Mo
Hg = —— (constant along span)
1 b°Q
]
99
Xy = ——— (constant along span)
Q m_b
Q°Q
1
. 29 _____ (constant along span)
The aerodynamic coefficients are, as defined in Ref. 9:
Lyn = Iy
_ tan @
Ly = =1 Ly

bng = La"'h(%‘a)

- _qlan@ 1 1 1 _

bha = i—k—[ 2‘11\(5 a)}
1

Mah = Mh-Lh(§4a)

tan & 1
Mah' = -i__k_[Mh-Lh(-z- + a)]
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(23)

(24)

(25)

(26)

(27

(28)

(29)

(30)

(31



1 1 2
Maa = Ma - (Mh + La)(-z- + a)+ Lh(; + a) (32)

tanQ 3 1 1 2
M, o= 18 2 L (- ad))e (33)
aa k [8 2k h's
sin 2-d
l"hO =[1-2____} th + Lha cos Q ‘L’hh' sin 2 (34)
bo
Yo 8in@-d (35)
Moo :[ bg J Mah* Maa cos s Mah' sinQ

where I.h, La' Ma and Mh are as defined by Ref. 10.

The above equations were written using the actual mass distribution for the
stabilizer being studied. These relationships are

- Q (36)
Mo = Mg, (b )
Q9
k]
b
Q
= X, m ——— (37)
ag GQ 90 b 2
o
0
4
2 bg
1 = r* m - (38)
79 av.Q "QO 5 2
2
where
b
(ﬁ.) =(1-y‘; ) (39)
b 2
fo Q

However, to simplify the aerodynamic calculations, the tapered planform was re-
placed by a rectangular planform of constant chord so that the aerodynamic coef-
ficients would remain constant along the span at a given value of reduced frequency.
A check calculation has shown that if reference semichord, br, is taken at the 75%.
span station of he actual mode perpendicularto the elastic axis, the difference
between the values of the aerodynamic integrals as given by the rectangular

*It should be noted that this equation is given incorrectly in Ref. 9.
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planform and those values found by an actual numerical integration along the
span of the tapered wing are very small.

The first bending mode was taken as

2
Fhl =ng (40)
the first torsion as
Fa = Mg (41)
and second bending as
F, = -12.2097n2 ,25.48873 -12.279n% (42)
hz ‘ 9 * 9 * ng

The second bending mode was obtained by assuming a power series in 19 which
satisfied

(1) the boundary conditions for a cantilever mount,
(2) the condition of orthogonality with the first bending mode, and
(3) the condition of zero deflection at the 75 percent span location.

Condition (3) was obtained from observation of the node line for the second
bending mode of the actual mode during vibration tests.

The parameters used in the analyses were

ug = 30 . a--0.20
2 °
r2 - 0.250 Q- 43°14'
Q
x = 0.20 —9 . 0.66798
HQ bd
0
b
2, , ’
2 -.0.21233 9 sin® = 3.22603
ty b
Q9

WADC TR 56-285 28



which resulted in the following values for the coefficients of the flutter equations.

w
h
1 43
A=0.078,125 Ly, +0.025,919 Ly, + 2.071,439 [1 -<_._.> z‘ (43)

wal
B = 0.020,332L,, +0.051,958 Ly, (44)
C=0.061,035L,  + 0.010,799 Ly . + 0.342,857 (45)
= -0.228,066 L, +0.059,291 L, , + 0.055, 743 Ly, + 6.582,103 (46)
E = 0.020,331,530 L, - 0.000,120,555 Ly, (47
F=0.091,120 Ly, + 0.025,810 Ly, +3.417,742 [1 - (whz/w"l) 2 z] (48)
= -0.000,283,89 Ly , - 0.004,972,8 L, . - 0.212,126 (49)
H = 0,038,584 Ly, -0.027,302 L, , -0.025,668 Ly, ~1.161,620 (50)
1=0,061,035 M, +0.021,599 M, + 0.342,857 (51)
J = -0.000,283,89 M_, +0.037,371 M_,, -0.212,126 (52)
K - 0.060,863 M + 0.010,124 M__, + 0.441,964 [1 - 2] (53)
L = ~0.180,995 M_, + 0.055,585 M +0.052,250 M, + 1.691,275  (54)
M - 0.059,201 M, + 0.023,604M . + 0.228,086 L, +0.076,860 L, , +6.582,193
(55)
N = 20.027,302M_, +0.023,604 M _,, +0.038,584 L, +0.158,271 Ly, - 1.161, 620
(56)
0 =0.055,585 M, + 0.014.753M_ . + 0.180,995L, _ +0.030,618 L, +1.691,275
(57)
P - -0.168,08M _, +0.080,996 M _ _ + 0.076,149 M . - 0.687.648L,,
+0.168,088 L, _ ~ 0.156,038 Ly, + 23.195,949 [x {;i)zzj (58)
oy

1
3 Solution of Equations of Motion for Flutter

The flutter equations for the swept stabilizer were solved for two (bending-
torsion), three (bending-torsion-pitch) and four (first bending-second bending-
torsion-pitch) degree-of-freedom systems. The flutter determinants for ecach
system are respectively
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1 K
A c
I X -0
M o
(59)
A B c D
E F G H
1 J X L =9
M N o P

where A, B, ----P are given by Eqs.  (43) through (58). In each case the
aerodynamic terms were evaluated by selecting specific combinations of M and
k.

The general pattern of solution of the three {lutter determinants was the
same. A given determinant was first expanded into a complex polynomial. Since
the right-hand side of the equation was zero, two separate equations were

. written by setting both the real and imaginary parts of the polynomial equal to

zero. These two simultaneous equations were solved for any two desired
eigenvalues,

In the {wo-deyree-of-freedom case, the complex polynomial resulting from
the expansion of the determinant was solved for the eigenvalues (wh /"’a )2 and
1 1

(wg /w,)z. The cross flow Mach numbers used were Mg = 0, 10/9, 5/4 and
1
10/7. This case corresponds to the pitch-locked condition.

The three-degree-of-freedom system was solved for the two eigenvalues
(“’o /mf)2 and (w /wf)z. (wh Jw )2 was set equal to 0. 0825, a value which
1 1 M

corresponded closely to the average value for the actual stabilizer models.
Azain MQ =0, 10/9, 5/4, and 10/7 were used.

Finally, for the four-degree-of-freedom systems, Z = (wa /c..‘f)2 (1 +ig) was
1
used as thac eigenvalue. Here, it was necessary to specify values of (wh /“"a )2,
1 1
(u.h A )2 and (""o/"”n )2 in advance. The solutions of the fourth-order deter-
2 i

i
minants were carried out on a 650 IBM computer using a program developed by

North American Aviation in Columbus, Ohio, and the results plotied on a
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V-g diakram. . Value of the constar;ts for which solutions were found wezre
2 _,‘ =
(whl/wal) = 0.0825, (whz/wal) = 0.9025, 1.155625 for (w¢/w“1)‘ 0.30

and(whl/wal)z ~ 0.0625, (wh2/wal)2 = 1.155625 for (%/wal)"’ - 0.20.

The results from the two- and three-dégree-of-(reedom cases are plotted in
Fig. 9 and then croasplotted in Fig. 1. The pitch-locked valuzes shown ag as-
ymptotes as (w¢/wh )z—o © in Fig. 9 and as the (w¢/ whx) —= o boundary in

1

Fig. 1 are the results of the two-degree-of-freedom calculations.

The most interesting feature of these analyses are the very deep ""buckets”

that occur at low values of (c..s¢/whl)2 in Fig. 9 and correspondingly at low

values of (w’/wa )2 in Fig. 1. In some cases the curves actually double back
1

on themselvea giving two regions of stability at a given value of (w¢ /whl)2 or

Mach number. The presence of these "buckets' is apparently due to a change in
flutter mode shape and can be explained by looking at sample four-degree-of-
freedom calculations in some detail.

Each solution for the four-degree-of-freedom problem at a given set of
values for (wh /w )2, (‘"h /w )2, and (w,/w )2 and Mach number, yields
1 o 2 9 ¢ Ty

four separate curves on branches on a V-g plot and several values of k for the
flutter condition of g = 0 (see Fig. 10). Since each branch represents a
particular mode of flutter, it appears from Fig. 10 at Mg = 10/9 (M = 1.525)
that the stabilizer is capable of flutter in the 18t mode and the 2nd mode. At
Mg = 5/4 (M = 1. 716) the stabilizer has one unstable region along the V axis
in the 2nd mode and two unstable regions in the 3rd mode. A set of three-
dimensional sketches of V versus g versus M is shown in Fig. 11. To avoid
confusion, each.sketch contains only one type of flutter mode. Because of the
difficulty in following the various possible flutter modes from a V-g dlagram to
a V‘,/mal bO. n5 Versus M plot, the results of the four-degree-of-freedom

analysis of Fig. 12 were ultimately drawn after looking at three-dimensional
plots of V versus g versus M with interest concentrated on the traces of the
Aifferent modes in the g = 0 plane.

The lowest set of curves on \r’f/wc'1 b0 75 versus M in Fig. 12 form the

critical flutter boundary. This boundary, as can be seen by looking at Fig. 12
is formed by three different flutter modes each becoming the critica) boundary
of instability over a particular Mach number range. The flutter boundary from
the four -degree-of-freedom analysis for (w°/wal)2 = 0. 30 appears to compare
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Sketches of V versus g versus Moch number curves from four-degree-of-freedom calculations.
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very fovorably with the three-degree-of-freedom f{lutter boundary [(mhz/wal)2 = ao]

which is also shown in Fig. 12. Thus, the second-bending degree of freedom

Vf :
, “a, Po.75
swept stabilizer below M = 2.0 except for a general lowering of the curve. In
using the four-degree-of-freedom analysis to interpret the points found in the
three-degree-of-freedom analysis, it is seen that the 8-shaped curves of Fig. 9
do indeed appear reasonable and are a direct result of a change in critical
flutter modes in going from low Mach number to high Mach number.

apparently has little influence on the flutter parameter of a

Another interesting characteristic of the V-g solutions of the four-degree-
of-freedom analysis is the variation in the flutter boundary with small changes
in the structural damping coefficient, "'g.' By referring to Fig. 13, it is seen
that increasing the structural damping from g = 0 to g = 0. 06 moves the "bucket”
on the flutter boundary due to the 2nd mode from about M = 1. 75 to about
M = 1.65. The general level of the flutter boundary as determined by the 1st
and 2nd modes will not be changed. '

7.0
”‘ AR - '-67
i / N /4y = 43°
6.0 - < A =05
L wooe ) N 42000 (o /g = 0.25
so ’* 2 . 025
’ i (M 9°003 ea ot 40% chord
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L | | )
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T o) (130
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Fig. 13. Voriation of Vf."ual bg.~« versus Moch number with chonge in structural
domping from four-degree-of fraedom colculations.
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APPENDIX II

EXPERIMENTAL DATA

This appendix gives the detailed tabulation of both design and experimental
data. Since both the model design and the testing techniques are essentially the
same as those described in Ref. 2, little discussion uf them is included in this
appendix.

The planform of the stabilizer models is shown in Fig. 14a and a cross
section of the root of the SWS-1 series models is shown in Fig. 14b. Root
cross sections for the SWS-2 and the SWS-3 series models are not shown since
they differ only in minor details from the SWS-1 model. As can be seen in
Fig. 14b the spar, which contributes essentially all of the model bending
stiffness and most of the torsional stiffness, is constructed of a pine core
around which is wrapped an aluminum skin. Steel caps are then cemented to the
spai. Both the steel and aluminum are tapered linearly along the span giving,
when cumbined with the taper of the height and width of spar, tho reguired fourth-
power distribution to the bending and torsional rigidities, EIQ and GJ_Q

by o
Elg - Elg (___.__b ) (60)
'Q()
4
b
Glg = Gl (____._..9 ) (61)
[} b_Q
where o
(_"_g~ > = (1 -y/28) (62)

bg
(o]

Balsa wuod cemented to the spar was used to give the aerodynamic shape re-
quired. and suitably spaced lead weights were used to give the mass parameters
required. Table 1 gives a summary of the design parameters for all cf the

stabilizer muodels.
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Fig. 14, Swept stabilizer design drawings {all dimensions in inches).
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Teble 1. Design parameters for « .«ept stobilizer models.

The parameters peesented in this rable are common to all the models built in this program.
Geometric Parameters
Panel aspect ratio, AR 1-2:3
Tapet 18010, AL . ot e e e e e e e e e e 142
Sweep angle of 1/ chord, . . . . ... ..o i it e e 45,0°
Mean serodynamic choed (in.), MAC. . .. .. ... ... ... ... . ... 7.7778
Section marx. thickness (B chord), .. ........ ... . ... .. . 6.0%
Line of max. thickness (S choed) ... ... ... i i s 50.0%
Design Parameters
© Section center of gravity location (% chord), {eg) . ... ... oLt $0.0%
Radius of gyratior: (fraction of semichord), fg. . . e oo v v nveinv v i 0.50
Calculated locus of shear centers (% choed), (o). . oo 40.0%
Properties ol Balsa Wood (average values)
Modulus of elasticity in bending (!b/in2), E o e e (400
Modulus of eln;li:ity intoesion (1b/in?), G .. .. 20,000
Dengity (Ib/in"), PR ac v cv v vveniet e i c.e... 0 003900
Properties of Pine Core £
Modulus of elasticity in beuding (lb/inz). | S 1.329 » !Ot
Modulus of elapticity in tw;vion b/ind, G L. 0.107 > 10
Density (Ib/in"), Py o oo vttt 0.014

The rnot fitting and the mounting block with the pitching mechanism are
shown in Fig. 15. The spar was glued and screwed to the root fitting, shown
removed from the mounting in Fig. 15a. Pitching {requency was controlled
by changing the thickness of the flexure shown on the end of the root fitting in
Fig. 15a. Figure 15b shows the rear of the mounting block with the {lexure
in place. The angle of attack of the model could be changed by rotating the
whole clamp shown in Fig. 15b. Drag and lift loads were carried adequately
by three ball bearings in the mounting block. The gap between the root and the
mounting block was sealed with aluminum foll for all tests.

With the pitching mechanism 'locked out, " static tests were made on most
of the models in an attempt to determine the cantilever properties of the model.
The properties determined were measured elastic axis, (ea)M. as discussed in
Ref. 2. and the root values of El g and GJg. The results of these measurements
are given in Table 2. There i8 consgiderable scatter in the Elg. GJg and (c;ﬂM
data.

The measured mass per unit lengtt, at the root (mo)M is also given in Table 2.

‘This quantity was indirectly measured using the agsumed mass distribution
2

m(y) = (m)y (1 - Y ) (63)
o'M 21

By just measuring the total mass and then computing (mo)M from

1
(m )y = lota -’I’;‘ﬁ"’ . (64)
fU o (1-% )24
o 21
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Fig. 15a.
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Fig. 15. Picturesof root mounting block.
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In Eq. (64) the total mass does not include the mass of the root fitting, so that
the value for (mo)M includes only the mass of the balsa, lead, glue and the
spar,

Data for the pitching frequency is found in Table 3. The mass moment of
inertia of the whole model, including the root fitting, was obtained by swinging
the model with a bifilar pendulum. The pitching mechanism flexibility iafiuence
coefficients, Ct, was measured with a transit and mirror arrangement. The
pitching frequency was then calculated as:

. ! (65)

¢ 27 I, C,

The results of the {lutter tests are given in Table 4. For the sake of
convenience, mpst of the important experimental natural still-air-vibration
frequencies are included as well as the tunne) conditions at flutter. If flutter
occurred, the conditions at the start of flutter are given. U no flutter occurred
duriny the test run, the conditions at the start and end of the test are given,
Figures 16 and 17 are excerpts from the high speed movies taken during the
flutter of the SWS-1-98 and the SWS-3d-87 models, respectively. These portions
of the movies have been analyzed and the results are presented in terms of the
pitching motion at the root and the motion of the tip sections in Figs, 18 and 19,
These f{lutter modes are typical of those encountered for the stabilizer models.

Complete vibration data, including sketches of node lines, frequency, and
structural damping of the lower modes of vibration are found in Table 5. All
of the models were vibration tested in both the "locked, " or cantilever, condi-
tion and with the pitching mechanism in. Figure 20 is a plot of the normalized
coupled frequencies with the pitching mechanism in. The lowest cantilever
bending frequency, rhN’ was used as the normalizing frequency. It is interesting
to note that the frequencies of the first coupled modes, ‘l' for moust of the
stabilizer models fall along a common curve with not too much scatter., The
same is true for the frequencies of the second coupled mode, '2'

Table 6 gives the influence coefficient data for the models with the pitching
mechanism in and Fig. 21 shows the location of the stations at which influence
coefficients were taken.
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Toble 2. Stotic doto for swept stobilizer models.
Model {m)\, (0c),, ((:Joﬁ)M (Elm)M
(slug/ft) | (% choed)
SWS-1 0.0214 3.650 x 104 8.493 % 104
Sws-2 0.0214 2,696 x 104 | 6.860 x 10%¢
Sws-1b | 0.0220 2.877 5 104 6.661 x 104
SWwS-1c | 0.0225 46.5% 3.459 x 10* 7.422 = 104
Sws-1d | 0.022% 49.0% 2.380 x 104 5.84 x 104
S¥S-le | 0.0246 39.0% 4.220 x 104 7.836 x 104
S¥s-3 0.0240 33,36% | 7.572 x 10*  |10.448 x 10*
S¥S 3a | 0.0231 43.0% 3.680 x 104 8.99 x 104
SWS-3 | 0.0224 0% 5.23 x 104 7.139 x 104
SWS-3¢ | 0.0233 1.942 x 10%* | 6.734 x 104
S¥s-3d | 0.0247 50% $.234 % 104 7.489 x 104
SWS.3e | 0.0274 3.89 x10% | 8.89 x 104
¢ Data for spar only.

Toble 3. Pitching frequency dota.
Model ('Qmoa- (c&m'al '6
(slug-ft?) | (rad/Ib-R) | (cpa)
SWS-1-L 0.00244 | 0.000022
SUS-1-138 | 0.00244 | 0.000543 | 138
SWS-1.105 | 0.00244 |0.00091% | 103
S®S.1.98 | 0.00244 |0.0010°2 | 8.}
SES-2.L 0.000022
S¥S-1b-L° | 0.00223 |0.000022
SUS.1c-48 | 0.00238 |0.004460 | 47.6
S¥S1d-L 0.000032
S¥S-le-74 | 0.20226 [0.002132 | "7
SWS-3.93 | 0.00206 |0.004460 | 52.5
S¥S-3a-63 | 0.00224 |0.002854 | 63.
S¥S.3b-33 | 0.00212 |0.004249 | $3.0
STS-3c-74 | 70.0020% | 0.00224 4.4
SYS-34.87 | 0.0022% |0.001498 b
S¥S-3e-120 | 0.0027% | 0.000628 | 120.0
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Fig. 16. Pictures of flutter of SWS.1-98 model from high speed movie
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Fig. 17. Pictures of flutter of SWS.3d-87 mode! from high speed movie.
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Fig. 18. Analysis of high speed movies of SW5-1.98 model.
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